<div class="csl-bib-body">
<div class="csl-entry">Gerhold, S., & Thomas, S. (2023). A converse to the neo-classical inequality with an application to the Mittag-Leffler function. <i>Monatshefte Für Mathematik</i>, <i>200</i>(3), 627–645. https://doi.org/10.1007/s00605-022-01817-8</div>
</div>
-
dc.identifier.issn
0026-9255
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191216
-
dc.description.abstract
We prove two inequalities for the Mittag-Leffler function, namely that the function log Eα(xα) is sub-additive for 0 < α< 1 , and super-additive for α> 1. These assertions follow from two new binomial inequalities, one of which is a converse to the neo-classical inequality. The proofs use a generalization of the binomial theorem due to Hara and Hino (Bull London Math Soc 2010). For 0 < α< 2 , we also show that Eα(xα) is log-concave resp. log-convex, using analytic as well as probabilistic arguments.
en
dc.language.iso
en
-
dc.publisher
SPRINGER WIEN
-
dc.relation.ispartof
Monatshefte für Mathematik
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Binomial coefficent
en
dc.subject
Inequality
en
dc.subject
Log-convexity
en
dc.subject
Mittag-Leffler function
en
dc.subject
Stable subordinator
en
dc.title
A converse to the neo-classical inequality with an application to the Mittag-Leffler function