<div class="csl-bib-body">
<div class="csl-entry">Bernkopf, M., & Melenk, J. M. (2023). Optimal convergence rates in L<sup>2</sup> for a first order system least squares finite element method. <i>ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS</i>, <i>57</i>(1), 107–141. https://doi.org/10.1051/m2an/2022026</div>
</div>
-
dc.identifier.issn
2822-7840
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191374
-
dc.description.abstract
We analyze a divergence based first order system least squares method applied to a second order elliptic model problem with homogeneous boundary conditions. We prove optimal convergence in the L²(Ω) norm for the scalar variable. Numerical results confirm our findings.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
EDP SCIENCES S A
-
dc.relation.ispartof
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Duality argument
en
dc.subject
Least squares method
en
dc.title
Optimal convergence rates in L² for a first order system least squares finite element method