<div class="csl-bib-body">
<div class="csl-entry">Radziwill, M., & Shubin, A. (2023). Poissonian Pair Correlation for αnθ mod 1. <i>International Mathematics Research Notices</i>, 7654–7679. https://doi.org/10.1093/imrn/rnad289</div>
</div>
-
dc.identifier.issn
1073-7928
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191426
-
dc.description.abstract
We show that sequences of the form $\alpha n^{\theta} \pmod{1}$ with $\alpha > 0$ and $0 < \theta < \tfrac{43}{117} = \tfrac{1}{3} + 0.0341 \ldots$ have Poissonian pair correlation. This improves upon the previous result by Lutsko, Sourmelidis, and Technau, where this was established for $\alpha > 0$ and $0 < \theta < \tfrac{14}{41} = \tfrac{1}{3} + 0.0081 \ldots$.
We reduce the problem of establishing Poissonian pair correlation to a counting problem using a form of amplification and the Bombieri-Iwaniec double large sieve. The counting problem is then resolved non-optimally by appealing to the bounds of Robert-Sargos and (Fouvry-Iwaniec-)Cao-Zhai. The exponent $\theta = \tfrac{2}{5}$ is the limit of our approach.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
OXFORD UNIV PRESS
-
dc.relation.ispartof
International Mathematics Research Notices
-
dc.subject
Poissonian pair correlation
en
dc.title
Poissonian Pair Correlation for αnθ mod 1
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
The University of Texas at Austin, United States of America (the)
-
dc.description.startpage
7654
-
dc.description.endpage
7679
-
dc.relation.grantno
I 4945-N
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Arithmetische Zufälligkeit
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
International Mathematics Research Notices
-
tuw.publication.orgunit
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
tuw.publisher.doi
10.1093/imrn/rnad289
-
dc.date.onlinefirst
2023-12-06
-
dc.identifier.articleid
rnad289
-
dc.identifier.eissn
1687-0247
-
dc.description.numberOfPages
26
-
tuw.author.orcid
0009-0002-2756-5856
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
I 4945-N
-
crisitem.author.dept
The University of Texas at Austin
-
crisitem.author.dept
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
crisitem.author.orcid
0009-0002-2756-5856
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie