Radziwill, M., & Shubin, A. (2023). Poissonian Pair Correlation for αnθ mod 1. International Mathematics Research Notices, 7654–7679. https://doi.org/10.1093/imrn/rnad289
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
Journal:
International Mathematics Research Notices
-
ISSN:
1073-7928
-
Date (published):
6-Dec-2023
-
Number of Pages:
26
-
Publisher:
OXFORD UNIV PRESS
-
Peer reviewed:
Yes
-
Keywords:
Poissonian pair correlation
en
Abstract:
We show that sequences of the form $\alpha n^{\theta} \pmod{1}$ with $\alpha > 0$ and $0 < \theta < \tfrac{43}{117} = \tfrac{1}{3} + 0.0341 \ldots$ have Poissonian pair correlation. This improves upon the previous result by Lutsko, Sourmelidis, and Technau, where this was established for $\alpha > 0$ and $0 < \theta < \tfrac{14}{41} = \tfrac{1}{3} + 0.0081 \ldots$.
We reduce the problem of establishing Poissonian pair correlation to a counting problem using a form of amplification and the Bombieri-Iwaniec double large sieve. The counting problem is then resolved non-optimally by appealing to the bounds of Robert-Sargos and (Fouvry-Iwaniec-)Cao-Zhai. The exponent $\theta = \tfrac{2}{5}$ is the limit of our approach.
en
Project title:
Arithmetische Zufälligkeit: I 4945-N (FWF - Österr. Wissenschaftsfonds)