Schratzberger, H., Stöger, B., Veiros, L. F., & Kirchner, K. (2023). Selective Transfer Semihydrogenation of Alkynes Catalyzed by an Iron PCP Pincer Alkyl Complex. ACS Catalysis, 13(21), 14012–14022. https://doi.org/10.1021/acscatal.3c04156
Two bench-stable Fe(II) alkyl complexes [Fe(κ3PCP-PCP-iPr)(CO)2(R)] (R = CH2CH2CH3, CH3) were obtained by the treatment of [Fe(κ3PCP-PCP-iPr)(CO)2(H)] with NaNH2 and subsequent addition of CH3CH2CH2Br and CH3I, respectively. The reaction proceeds via the anionic Fe(0) intermediate Na[Fe(κ3PCP-PCP-iPr)(CO)2]. The catalytic performance of both alkyl complexes was investigated for the transfer hydrogenation of terminal and internal alkynes utilizing PhSiH3 and iPrOH as a hydrogen source. Precatalyst activation is initiated by migration of the alkyl ligand to the carbonyl C atom of an adjacent CO ligand. In agreement with previous findings, the rate of alkyl migration follows the order nPr > Me. Accordingly, [Fe(κ3PCP-PCP-iPr)(CO)2(CH2CH2CH3)] is the more active catalyst. The reaction takes place at 25 °C with a catalyst loading of 0.5 mol%. There was no overhydrogenation, and in the case of internal alkynes, exclusively, Z-alkenes are formed. The implemented protocol tolerates a variety of electron-donating and electron-withdrawing functional groups including halides, nitriles, unprotected amines, and heterocycles. Mechanistic investigations including deuterium labeling studies and DFT calculations were undertaken to provide a reasonable reaction mechanism.