<div class="csl-bib-body">
<div class="csl-entry">Gerhold, S. (2023). Small ball probabilities and large deviations for grey Brownian motion. <i>Electronic Communications in Probability</i>, <i>28</i>, 1–8. https://doi.org/10.1214/23-ECP555</div>
</div>
-
dc.identifier.issn
1083-589X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192375
-
dc.description.abstract
We show that the uniform norm of generalized grey Brownian motion over the unit interval has an analytic density, excluding the special case of fractional Brownian motion. Our main result is an asymptotic expansion for the small ball probability of generalized grey Brownian motion, which extends to other norms on path space. The decay rate is not exponential but polynomial, of degree two. For the uniform norm and the Hölder norm, we also prove a large deviations estimate.
en
dc.language.iso
en
-
dc.publisher
Institute of Mathematical Statistics (IMS)
-
dc.relation.ispartof
Electronic Communications in Probability
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
fractional Brownian motion
en
dc.subject
grey Brownian motion
en
dc.subject
large deviations
en
dc.subject
small ball probabilities
en
dc.subject
small deviations
en
dc.subject
Wright M-function
en
dc.title
Small ball probabilities and large deviations for grey Brownian motion