<div class="csl-bib-body">
<div class="csl-entry">Raubitzek, S. (2023). <i>Chaos, complexity and neural network time series predictions</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.117442</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.117442
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193179
-
dc.description
Zusammenfassung in deutscher Sprache
-
dc.description
Literaturverzeichnis: Seite 279-295
-
dc.description.abstract
Many of today’s most successful approaches for predicting time series data use machine and/or deep learning approaches such as different neural network architectures. These approaches strongly depend on the data available to train the employed algorithm. For, e.g., agricultural or environmental relevant applications, long-term data sets are rare and often sparsely sampled. Apart from that are often difficult to predict because of numerous influences that affect these data sets. Thus, these data sets have an inherent randomness to them.The problem of sparsely sampled data can be overcome by employing different interpolation techniques, such as linear, polynomial, or fractal interpolation. On the other hand, the inherent randomness of difficult time series data can be treated by employing ensemble predictions.This research attempts to combine interpolation techniques and neural network ensemble predictions and further improve these combined approaches by taking into account the complexity and chaotic properties of the underlying data. The presented research introduces two interpolation techniques. One is a Hurst-exponent- based fractal interpolation considering the fluctuating nature of stochastic time series data. And the other one is a stochastic interpolation method that considers the reconstructed phase space properties of chaotic time series to produce an interpolation with a rather smooth phase space trajectory. Further, this research presents an ensemble technique that takes into account the com- plexity and/or reconstructed phase-space properties of the data under study. This is achieved by randomly parameterizing a multitude of long short-term memory neural networks (LSTM), having them produce an autoregressive prediction, and afterward filtering this multitude of different predictions based on their signal complexity and/or reconstructed phase space properties. First, the results show that neural network time-series predictions can be improved by employing the discussed interpolation techniques. And second, predictions can effectively be filtered based on their inherent complexity and phase space properties to improve ensemble predictions.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Chaos
en
dc.subject
Complexity
en
dc.subject
Neural Networks
en
dc.subject
Time Series Prediction
en
dc.subject
Time Series Analysis
en
dc.subject
Time Series Interpolation
en
dc.subject
Stochastic Processes
en
dc.subject
Phase Space Reconstruction
en
dc.subject
LSTM
en
dc.title
Chaos, complexity and neural network time series predictions
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.117442
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Sebastian Raubitzek
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Neubauer, Thomas
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17056674
-
dc.description.numberOfPages
295
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0003-2206-9263
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-9272-6225
-
tuw.assistant.orcid
0000-0002-9814-6045
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering