<div class="csl-bib-body">
<div class="csl-entry">Seshadri, P., & Knees, P. (2023). Leveraging Negative Signals with Self-Attention for Sequential Music Recommendation. In <i>Proceedings of the Music Recommender Systems Workshop (MuRS) at the 17th ACM Recommender Systems Conference (RecSys’23)</i>. Music Recommender Systems Workshop at the 17th ACM Recommender Systems Conference (RecSys’23), Singapore, Singapore. Zenodo. https://doi.org/10.5281/zenodo.8372449</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193576
-
dc.description.abstract
Music streaming services heavily rely on their recommendation engines to continuously provide content to their consumers. Sequential recommendation consequently has seen considerable attention in current literature, where state of the art approaches focus on self-attentive models leveraging contextual information such as long and short-term user history and item features; however, most of these studies focus on long-form content domains (retail, movie, etc.) rather than short-form, such as music. Additionally, many do not explore incorporating negative session-level feedback during training. In this study, we investigate the use of transformer-based self-attentive architectures to learn implicit session-level information for sequential music recommendation. We additionally propose a contrastive-learning task to incorporate negative feedback (e.g skipped tracks) to promote positive hits and penalize negative hits. This task is formulated as a simple loss term that can be incorporated into a variety of deep-learning architectures for sequential recommendation. Our experiments show that this results in consistent performance gains over the baseline architectures ignoring negative user feedback.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
music recommender systems
en
dc.subject
Music Information Retrieval
en
dc.title
Leveraging Negative Signals with Self-Attention for Sequential Music Recommendation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
Georgia Institute of Technology, United States of America (the)
-
dc.relation.grantno
P 33526-N
-
dc.rights.holder
The authors.
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Music Recommender Systems Workshop (MuRS) at the 17th ACM Recommender Systems Conference (RecSys'23)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Zenodo
-
tuw.project.title
Empfehlungssystem & Nutzer: Hin zu gegenseitigem Verständnis
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.5281/zenodo.8372449
-
dc.identifier.libraryid
AC17202812
-
dc.description.numberOfPages
5
-
tuw.author.orcid
0009-0008-7838-9614
-
tuw.author.orcid
0000-0003-3906-1292
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
Music Recommender Systems Workshop at the 17th ACM Recommender Systems Conference (RecSys'23)
en
tuw.event.startdate
19-09-2023
-
tuw.event.enddate
19-09-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Singapore
-
tuw.event.country
SG
-
tuw.event.presenter
Seshadri, Pavan
-
tuw.presentation.online
Online
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
dc.relation.isnewversionof
https://doi.org/10.48550/arXiv.2309.11623
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openairetype
conference paper
-
crisitem.author.dept
Georgia Institute of Technology, United States of America (the)
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.orcid
0009-0008-7838-9614
-
crisitem.author.orcid
0000-0003-3906-1292
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering