<div class="csl-bib-body">
<div class="csl-entry">Bozzato, L., Eiter, T., Kiesel, R. P. D., & Stepanova, D. (2023). <i>Contextual Reasoning for Scene Generation. Technical Report</i>. https://doi.org/10.48550/arXiv.2305.02255</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193875
-
dc.description.abstract
We present a continuation to our previous work, in which we developed the MR-CKR framework to reason with knowledge overriding across contexts organized in multi-relational hierarchies. Reasoning is realized via ASP with algebraic measures, allowing for flexible definitions of preferences. In this paper, we show how to apply our theoretical work to real autonomous-vehicle scene data. Goal of this work is to apply MR-CKR to the problem of generating challenging scenes for autonomous vehicle learning. In practice, most of the scene data for AV learning models common situations, thus it might be difficult to capture cases where a particular situation occurs (e.g. partial occlusions of a crossing pedestrian). The MR-CKR model allows for data organization exploiting the multi-dimensionality of such data (e.g., temporal and spatial). Reasoning over multiple contexts enables the verification and configuration of scenes, using the combination of different scene ontologies. We describe a framework for semantically guided data generation, based on a combination of MR-CKR and Algebraic Measures. The framework is implemented in a proof-of-concept prototype exemplifying some cases of scene generation.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
scene generation
en
dc.subject
knowledge representation
en
dc.subject
reasoning
en
dc.title
Contextual Reasoning for Scene Generation. Technical Report
en
dc.type
Report
en
dc.type
Bericht
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.contributor.affiliation
Fondazione Bruno Kessler, Italy
-
dc.contributor.affiliation
Bosch Center for Artificial Intelligence, Germany
-
dc.relation.grantno
820437
-
dc.relation.grantno
825619
-
dc.relation.grantno
W 1255-N23
-
dc.rights.holder
Authors
-
dc.type.category
Technical Report
-
tuw.project.title
Toward AI Systems That Augment and Empower Humans by Understanding Us, our Society and the World Around Us
-
tuw.project.title
A European AI On Demand Platform and Ecosystem
-
tuw.project.title
Doktoratskolleg
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-03 - Forschungsbereich Knowledge Based Systems
-
tuw.publisher.doi
10.48550/arXiv.2305.02255
-
dc.identifier.libraryid
AC17202811
-
dc.description.numberOfPages
23
-
tuw.author.orcid
0000-0001-6003-6345
-
tuw.author.orcid
0000-0001-8654-5121
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.cerifentitytype
Publications
-
item.grantfulltext
open
-
item.openairetype
technical report
-
item.fulltext
with Fulltext
-
item.openaccessfulltext
Open Access
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18gh
-
item.languageiso639-1
en
-
crisitem.project.funder
European Commission
-
crisitem.project.funder
European Commission
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
820437
-
crisitem.project.grantno
825619
-
crisitem.project.grantno
W 1255-N23
-
crisitem.author.dept
Fondazione Bruno Kessler, Italy
-
crisitem.author.dept
E192 - Institut für Logic and Computation
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems