Innerberger, M., Miraçi, A., Praetorius, D., & Streitberger, J. (2024). hp-robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis, 58(1), 247–272. https://doi.org/10.1051/m2an/2023104
ESAIM: Mathematical Modelling and Numerical Analysis
-
ISSN:
2822-7840
-
Datum (veröffentlicht):
Jan-2024
-
Umfang:
26
-
Verlag:
EDP Sciences
-
Peer Reviewed:
Ja
-
Keywords:
adaptive finite element method; local multigrid; $hp$-robustness; stable decomposition
en
Abstract:
In this work, we formulate and analyze a geometric multigrid method for the iterative solution of the discrete systems arising from the finite element discretization of symmetric second-order linear elliptic diffusion problems. We show that the iterative solver contracts the algebraic error robustly with respect to the polynomial degree $p \ge 1$ and the (local) mesh size $h$. We further prove that the built-in algebraic error estimator which comes with the solver is $hp$-robustly equivalent to the algebraic error. The application of the solver within the framework of adaptive finite element methods with quasi-optimal computational cost is outlined. Numerical experiments confirm the theoretical findings.
en
Projekttitel:
Analytische und numerische Koppelung im Mikromagnetismus: F 6509-N36 (FWF - Österr. Wissenschaftsfonds) Computational nonlinear PDEs: P 33216-N (FWF - Österr. Wissenschaftsfonds)