<div class="csl-bib-body">
<div class="csl-entry">Achleitner, F., Arnold, A., Carlen, E., Jüngel, A., & Mehrmann, V. (2024, June 12). <i>The Hypocoercivity Index for the short time behavior of linear time-invariant ODE systems</i> [Conference Presentation]. EQUADIFF Conference 2024, Karlstad, Sweden. http://hdl.handle.net/20.500.12708/198613</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/198613
-
dc.description.abstract
This is a joint work with Anton Arnold (TU Wien, Vienna, Austria) and Eric A. Carlen (Rutgers University, Piscataway (NJ), USA).
We consider the class of conservative-dissipative ODE systems, which is a subclass of Lyapunov stable, linear time-invariant ODE systems. We characterize asymptotically stable, conservative-dissipative ODE systems via the hypocoercivity (theory) of their system matrices. Our main result is a concise characterization of the hypocoercivity index (an algebraic structural property of matrices with positive semi-definite Hermitian part introduced in Achleitner, Arnold, and Carlen (2018)) in terms of the short time behavior of the norm of the matrix exponential for the associated conservative-dissipative ODE system.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
semi-dissipative ODE systems
en
dc.subject
Hypocoercivity (index)
en
dc.title
The Hypocoercivity Index for the short time behavior of linear time-invariant ODE systems
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
Rutgers, The State University of New Jersey, United States of America (the)
-
dc.contributor.affiliation
Technische Universität Berlin, Deutschland
-
dc.relation.grantno
F 6507-N36
-
dc.type.category
Conference Presentation
-
tuw.publication.invited
invited
-
tuw.project.title
Numerische Methoden Höherer Ordnung für nichtlokale Operatoren