Achleitner, F., Arnold, A., Carlen, E., Jüngel, A., & Mehrmann, V. (2024, June 12). The Hypocoercivity Index for the short time behavior of linear time-invariant ODE systems [Conference Presentation]. EQUADIFF Conference 2024, Karlstad, Sweden. http://hdl.handle.net/20.500.12708/198613
This is a joint work with Anton Arnold (TU Wien, Vienna, Austria) and Eric A. Carlen (Rutgers University, Piscataway (NJ), USA).
We consider the class of conservative-dissipative ODE systems, which is a subclass of Lyapunov stable, linear time-invariant ODE systems. We characterize asymptotically stable, conservative-dissipative ODE systems via the hypocoercivity (theory) of their system matrices. Our main result is a concise characterization of the hypocoercivity index (an algebraic structural property of matrices with positive semi-definite Hermitian part introduced in Achleitner, Arnold, and Carlen (2018)) in terms of the short time behavior of the norm of the matrix exponential for the associated conservative-dissipative ODE system.
en
Projekttitel:
Numerische Methoden Höherer Ordnung für nichtlokale Operatoren: F 6507-N36 (FWF - Österr. Wissenschaftsfonds)