<div class="csl-bib-body">
<div class="csl-entry">Moosbrugger, M. (2024). <i>Automated analysis of probabilistic loops</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.123240</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2024.123240
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/198867
-
dc.description.abstract
This thesis addresses challenges and advancements in the automated analysis of probabilistic loops. It contributes to the theoretical foundations and computational techniques for analyzing the safety and liveness of probabilistic loops.A core contribution is the development of a fully automated method for computinghigher moments of program variables for a large class of probabilistic loops. This method leverages linear recurrences with constant coefficients to model higher moments of loop variables and compute their exact closed-form expressions. Introducing the theory of moment-computable loops, we show that our approach is complete for a class of programs supporting branching statements, polynomial arithmetic, and both discrete and continuous probability distributions. For probabilistic systems with unknown model parameters, we introduce a novel technique for automatic sensitivity analysis with respect to these parameters. By representing unknown parameters with symbolic constants and modeling sensitivities using recurrences, we show that our technique is applicable even to loops that are not moment-computable.Furthermore, this thesis explores hardness bounds for computing the strongest polynomial invariant for classical polynomial loops, showing that this problem Skolem-hard. As an intermediary result of independent interest, we show that point-to-point reachability for polynomial dynamical systems is also Skolem-hard. Through the notion of moment invariant ideals, we extend these hardness results from classical to probabilistic program analysis. Despite the hardness results, we propose a method for computing polynomial invariants of bounded degree for (probabilistic) polynomial loops and a synthesis procedure to over-approximate polynomial loops with linearizable loops.Additionally, the thesis introduces Polar, a tool implementing the developed techniques,demonstrating its capability to analyze benchmarks previously out of reach for state-of-the-art methods.Regarding termination analysis, we propose a novel approach based on asymptotic bounds for polynomial probabilistic loops, leading to the development of Amber, the first tool to certify both probabilistic termination and non-termination.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
probabilistic reasoning
en
dc.subject
program analysis
en
dc.subject
symbolic computation
en
dc.subject
formal methods
en
dc.subject
loop terminatiom
en
dc.title
Automated analysis of probabilistic loops
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2024.123240
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Marcel Moosbrugger
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Bartocci, Ezio
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17228559
-
dc.description.numberOfPages
209
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-8299-2714
-
tuw.assistant.orcid
0000-0002-8004-6601
-
item.openairetype
doctoral thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.fulltext
with Fulltext
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering