Schoder, S. J. (2018). Aeroacoustic analogies based on compressible flow data [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2018.40525
Strömungsakustik; Finite Element Methode; Numerische Strömungsmechanik; Kompressible Strömung
de
Aeroacoustic; Finite element method; Computational fluid dynamics; Compressible flow
en
Abstract:
In dieser Dissertation wird eine neuartige hybride Simulationsmethode zur Berechnung strömungsakustischer Effekte entwickelt. Industrielle Anwendung mit Akustik als Qualitätsmerkmal treiben die Nachfrage nach effizienten Berechnungsmethoden. Durch den hybriden Ansatz wird der Effizienz Rechnung getragen und der Simulationsaufwand, im Vergleich zu eine direkten Simulation von Strömung und Akustik, wesentlich reduziert. Zusätzlich kann durch die Trennung eine detailliertere Akustiksimulation samt spezieller Randbedingungen und Materialverteilungen durchgeführt werden. Eine wesentliche Herausforderung stellt die Erweiterung von hybriden Ansätzen auf kompressible Strömungsdaten dar. Aus der Sicht eines Strömungsmechanikers wirft dieser unkonventionelle Workflow Fragen auf (besonders im höheren Machzahl-Bereich). Bei speziellen Problemstellungen mit strömungsakustischen Feedback erfordert die Physik eine kompressible Strömungsmodellierung und daher eine Erweiterung der hybriden Methode. In diesem Sinne wird die Rahmenbedingung (inkompressible Strömungssimulation) der hybriden Methoden auf eine kompressible Strömungsrechnung erweitert. Die Helmholtz Zerlegung projeziert anschließend die kompressible Lösung auf einen inkompressiblen Lösungsraum. Diese Projektion wird dann in der aeroakustischen Analogie verwendet. Interessanterweise wird in der Praxis oft auch bei inkompressiblen Strömungssimulationen ein Rossiter-Feedback Mechanismus festgestellt, welcher physikalisch nicht möglich ist. Die hybride Methode verlangt eine exakte und energieerhaltende Gittertransformation der physikalischen Größen. Ein einfacher Nächster-Nachbar-Algorithmus ist nicht ausreichend. Darum wird eine Interpolation mit radialen Basisfunktionen in Kombination mit einer konservativen Integration verwendet.
de
The thesis in hand focuses on a novel numerical simulation method to compute aeroacoustic analogies based on compressible flow data by a hybrid technique. Industrial applicability of aeroacoustic simulation technologies is computational demanding. The computational workload is reduced with the hybrid approach to an efficient minimum. With the proposed workflow we are capable of combining the properties of a fully resolved compressible flow simulation (including feedback from acoustics to flow structures) and the desirable advantage of a separated acoustic simulation. A separation of the physical fields during the simulation yields in a computationally efficient algorithm, which is capable of including relevant physical effects due to the flow and acoustically specific boundaries, like impedance, can be applied. In this sense, we extend the hybrid approach from underlying incompressible flow simulations to compressible flow simulations using Helmholtz projection to obtain a vortical base flow and apply the known hybrid methodologies. The application of this hybrid methodology seems to be unconventional and fluid-dynamically not rigorous, but with the correct wave operator the equation obeys the fluid-dynamic conservation equations. We apply the method to aeroacoustic examples involving aeroacoustic feedback mechanisms, which require a compressible flow simulation. However, practical applications show that sometimes even for incompressible flow simulations "typical feedback mechanism", as described by Rossiter, are captured. A short mathematical explanation, why feedback is even possible for incompressible flow structures, is given based on compact acoustics. Hybrid aeroacoustic analogies rely on energy conserving and accurate transformation schemes that convert the known physical quantities, like pressure, and velocity, form one grid to another. Simple Nearest Neighbor mappings are not accurate enough for source term computation. Therefore, a combination of a local Radial Basis Function framework and conservative integration procedure relying on cell intersections is applied to transform the physical quantities and construct accurate derivatives on them for a robust simulation workflow.