Tapia Garcia, S. (2024, January 17). A Slope Generalization of Attouch Theorem [Conference Presentation]. 32rd International Conference on Variational Analysis and Optimization, Santiago, Chile.
A classical result of variational analysis, known as Attouch theorem, establishes an equivalence between epigraphical convergence of a sequence of proper convex lower semicontinuous functions and graphical convergence of the corresponding subdifferential maps up to a normalization condition which fixes the integration constant. In this work, we show that in finite dimensions and under a mild boundedness assumption, we can replace subdifferentials (sets of vectors) by slopes (scalars, corresponding to the distance of the subdifferentials to zero) and still obtain the same characterization: namely, the epigraphical convergence of functions is equivalent to the epigraphical convergence of their slopes.