<div class="csl-bib-body">
<div class="csl-entry">Sakhnovych, Y. (2024). <i>Black-box Model Watermarking in Federated Learning</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.120214</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2024.120214
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/202266
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Federated learning allows multiple parties to collaboratively train a model, without needing individual participants to directly reveal their private data. However, sharing the model at various stages of training poses risks for the model owners, particularly from insider threats such as malicious clients who may steal the model. To counter these threats, embedding a watermark in the model allows owners to prove ownership and protect against unauthorized use. This thesis aims to evaluate the effectiveness, fidelity, robustness, and efficiency of state-of-the-art federated black-box watermarking approaches. A key focus is on intermediate models, specifically assessing how well these models are protected during the training process, and exploring how they can be exploited in watermark removal attacks. Additionally, this work proposes modifications to existing watermarking methods in federated learning to address the identified vulnerabilities.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Machine Learning
en
dc.subject
Adversarial Machine Learning
en
dc.subject
Federated Learning
en
dc.subject
Intellectual Property Protection
en
dc.subject
Model Watermarking
en
dc.subject
Model Inversion
en
dc.title
Black-box Model Watermarking in Federated Learning
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2024.120214
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Yana Sakhnovych
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Mayer, Rudolf
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17333595
-
dc.description.numberOfPages
166
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.assistant.orcid
0000-0003-0424-5999
-
item.openaccessfulltext
Open Access
-
item.fulltext
with Fulltext
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering