<div class="csl-bib-body">
<div class="csl-entry">Feischl, M., & Schwab, Ch. (2020). Exponential convergence in H1 of hp-FEM for Gevrey regularity with isotropic singularities. <i>Numerische Mathematik</i>, <i>144</i>, 323–346. https://doi.org/10.1007/s00211-019-01085-z</div>
</div>
-
dc.identifier.issn
0029-599X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/20270
-
dc.description.abstract
For functions u∈ H1(Ω) in a bounded polytope Ω ⊂ Rdd= 1 , 2 , 3 with plane sides for d= 2 , 3 which are Gevrey regular in Ω ¯ \ S with point singularities concentrated at a set S⊂ Ω ¯ consisting of a finite number of points in Ω ¯ , we prove exponential rates of convergence of hp-version continuous Galerkin finite element methods on affine families of regular, simplicial meshes in Ω. The simplicial meshes are geometrically refined towards S but are otherwise unstructured.
en
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Numerische Mathematik
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
exponential convergence
en
dc.title
Exponential convergence in H1 of hp-FEM for Gevrey regularity with isotropic singularities