Gombots, S., Nowak, J. J., & Kaltenbacher, M. (2021). Sound source localization – state of the art and new inverse scheme. Elektrotechnik Und Informationstechnik : E & i, 138(3), 229–243. https://doi.org/10.1007/s00502-021-00881-6
Acoustic source localization techniques in combination with microphone array measurements have become an important tool for noise reduction tasks. A common technique for this purpose is acoustic beamforming, which can be used to determine the source locations and source distribution. Advantages are that common algorithms such as conventional beamforming, functional beamforming or deconvolution techniques (e.g., Clean-SC) are robust and fast. In most cases, however, a simple source model is applied and the Green’s function for free radiation is used as transfer function between source and microphone. Additionally, without any further signal processing, only stationary sound sources are covered. To overcome the limitation of stationary sound sources, two approaches of beamforming for rotating sound sources are presented, e.g., in an axial fan. Regarding the restrictions concerning source model and boundary conditions, an inverse method is proposed in which the wave equation in the frequency domain (Helmholtz equation) is solved with the corresponding boundary conditions using the finite element method. The inverse scheme is based on minimizing a Tikhonov functional matching measured microphone signals with simulated ones. This method identifies the amplitude and phase information of the acoustic sources so that the prevailing sound field can be with a high degree of accuracy.
en
Die Lokalisation von akustischen Schallquellen mithilfe von Schalldruckmessungen unter Verwendung von Mikrofonarrays ist ein wichtiges Instrument in der Lärmbekämpfung. Ein weit verbreitetes Verfahren ist hierbei das akustische Beamforming, mit dem sowohl die Quellpositionen als auch -verteilungen bestimmt werden können. Bekannte Algorithmen, wie Standard-Beamforming, Functional-Beamforming oder Entfaltungsmethoden (wie z. B. Clean-SC) haben den Vorteil, dass sie robust und schnell in der Berechnung sind. Nachteilig ist hingegen, dass meist ein simples Modell für die akustischen Quellen angenommen wird, und dass die Green’sche Funktion für freie Schallabstrahlung als Transferfunktion zwischen Quell- und Mikrofonpositionen verwendet wird. Außerdem können bewegte Schallquellen nicht ohne weitere Signalverarbeitungsschritte lokalisiert werden. In diesem Zusammenhang werden zwei Methoden für rotierende Schallquellen, wie sie z. B. bei einem rotierenden Ventilator vorkommen, präsentiert.
Für eine akkurate Berücksichtigung der Messumgebung und um die Einschränkungen bezüglich des vereinfachten Quellenmodells und der Randbedingungen der Messumgebung zu überwinden, wird ein inverses Verfahren präsentiert, in dem die Wellengleichung im Frequenzbereich (Helmholtz-Gleichung) mit entsprechenden Randbedingungen mittels der Finite Elemente-Methode gelöst wird. Dieses Verfahren basiert auf einem Tikhonov-Funktionals, das die Differenz zwischen Mikrofonmessungen und den simulierten Schalldrücken minimiert. Mit dieser inversen Methode können die Schallquellen in Amplitude und Phase identifiziert werden, sodass das vorherrschende Schallfeld mit hoher Genauigkeit rekonstruiert werden kann.