<div class="csl-bib-body">
<div class="csl-entry">Suchan, D. (2024). <i>Hyperparameter tuning for quantum machine learning</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.117780</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2024.117780
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203449
-
dc.description.abstract
In recent years, the computational requirements of modern Machine Learning (ML)applications have increased significantly. The upcoming post-Moore era therefore forces scientists to search for alternative forms of computing that can meet computational demands beyond the capabilities of classical von Neumann architectures. Quantum computing emerged as a very promising paradigm for providing the necessary computational resources, as several quantum algorithms have proven to be more efficient for certain problems. The great interest in exploiting the capabilities of quantum hardware to speed up machine learning applications contributed to the rise of Quantum Machine Learning (QML).The most promising approach for QML are Variational Quantum Algorithms (VQAs), that combine classical hardware to overcome the limitations of current quantum hardware. Variational Quantum Algorithms (VQAs) use an optimizer on classical hardware to train a Parameterized Quantum Circuit (PQC), that is used to find the quantum state containing the solution to the problem. However, the optimal choice of the optimizer, the structure of the PQC and other hyperparameters is problem-specific and has a major impact on the performance of VQAs. The large number of available options makes manual testing extremely time-consuming and therefore requires automated solutions. In classical ML, automated hyperparameter tuning is widely used, but there are only few studies on its application to QML. In this thesis, we therefore investigate the applicability and performance of different automated hyperparameter tuning algorithms for QML classification tasks.Our results show that choosing the right hyperparameter tuning algorithm is essential and allows to reliably find near optimal configurations. Nevertheless, we also see that the barren plateau phenomenon significantly impacts the runtime of these algorithms and must be considered in future QML projects. Overall, our results highlight the complexity of hyperparameter tuning for QML applications and provide valuable insights for future projects.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
quantum computing
en
dc.subject
machine learning
en
dc.subject
quantum machine learning
en
dc.subject
variational quantum algorithms
en
dc.subject
hyperparameter tuning
en
dc.subject
hyperparameter optimization
en
dc.title
Hyperparameter tuning for quantum machine learning
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2024.117780
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Daniel Suchan
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
De Maio, Vincenzo
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17339813
-
dc.description.numberOfPages
86
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0009-0007-0661-5937
-
tuw.assistant.orcid
0000-0002-7352-3895
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering