<div class="csl-bib-body">
<div class="csl-entry">Kofnov, A., Moosbrugger, M., Stankovic, M., Bartocci, E., & Bura, E. (2024). Exact and Approximate Moment Derivation for Probabilistic Loops With Non-Polynomial Assignments. <i>ACM Transactions on Modeling and Computer Simulation</i>, <i>34</i>(3), Article 18. https://doi.org/10.1145/3641545</div>
</div>
-
dc.identifier.issn
1049-3301
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203670
-
dc.description.abstract
Many stochastic continuous-state dynamical systems can be modeled as probabilistic programs with nonlinear non-polynomial updates in non-nested loops. We present two methods, one approximate and one exact, to automatically compute, without sampling, moment-based invariants for such probabilistic programs as closed-form solutions parameterized by the loop iteration. The exact method applies to probabilistic programs with trigonometric and exponential updates and is embedded in the Polar tool. The approximate method for moment computation applies to any nonlinear random function as it exploits the theory of polynomial chaos expansion to approximate non-polynomial updates as the sum of orthogonal polynomials. This translates the dynamical system to a non-nested loop with polynomial updates, and thus renders it conformable with the Polar tool that computes the moments of any order of the state variables. We evaluate our methods on an extensive number of examples ranging from modeling monetary policy to several physical motion systems in uncertain environments. The experimental results demonstrate the advantages of our approach with respect to the current state-of-the-art.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
ASSOC COMPUTING MACHINERY
-
dc.relation.ispartof
ACM Transactions on Modeling and Computer Simulation
-
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
-
dc.subject
Probabilistic programs
en
dc.subject
prob-solvable loops
en
dc.subject
Polynomial Chaos Expansion
en
dc.subject
non-linear updates
en
dc.subject
trigonometric updates
en
dc.subject
exponential updates
en
dc.subject
stochastic dynamical systems
en
dc.title
Exact and Approximate Moment Derivation for Probabilistic Loops With Non-Polynomial Assignments
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
de
dc.rights.license
Creative Commons Attribution-ShareAlike 4.0 International