<div class="csl-bib-body">
<div class="csl-entry">Simonov, S., & Woracek, H. (2024). Local spectral multiplicity of selfadjoint couplings with general interface conditions. <i>Integral Equations and Operator Theory</i>, <i>96</i>(2), Article 18. https://doi.org/10.1007/s00020-024-02767-6</div>
</div>
-
dc.identifier.issn
0378-620X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203741
-
dc.description.abstract
We consider selfadjoint operators obtained by pasting a finite number of boundary relations with one-dimensional boundary space. A typical example of such an operator is the Schrödinger operator on a star-graph with a finite number of finite or infinite edges and an interface condition at the common vertex. A wide class of “selfadjoint” interface conditions, subject to an assumption which is generically satisfied, is considered. We determine the spectral multiplicity function on the singular spectrum (continuous as well as point) in terms of the spectral data of decoupled operators.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
SPRINGER BASEL AG
-
dc.relation.ispartof
Integral Equations and Operator Theory
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Boundary relation
en
dc.subject
Herglotz function
en
dc.subject
Ordinary boundary triplet
en
dc.subject
Quantum graph
en
dc.subject
Schrödinger operator
en
dc.subject
Singular spectrum
en
dc.subject
Spectral multiplicity
en
dc.subject
Weyl theory
en
dc.title
Local spectral multiplicity of selfadjoint couplings with general interface conditions