<div class="csl-bib-body">
<div class="csl-entry">Bernkopf, M., & Melenk, J. M. (2024). Optimal convergence rates in L<sup>2</sup> for a first order system least squares finite element method - part II: Inhomogeneous Robin boundary conditions. <i>COMPUTERS & MATHEMATICS WITH APPLICATIONS</i>, <i>173</i>, 1–18. https://doi.org/10.1016/j.camwa.2024.07.035</div>
</div>
-
dc.identifier.issn
0898-1221
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203742
-
dc.description.abstract
We consider divergence-based high order discretizations of an L2-based first order system least squares formulation of a second order elliptic equation with Robin boundary conditions. For smooth geometries, we show optimal convergence rates in the L2(Ω)-norm for the scalar variable. Convergence rates for the L2(Ω)-norm error of the gradient of the scalar variable as well as the vectorial variable are also derived. Numerical examples illustrate the analysis.
en
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
COMPUTERS & MATHEMATICS WITH APPLICATIONS
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Duality argument
en
dc.subject
First order least squares methods
en
dc.subject
Optimal L -convergence 2
en
dc.subject
p-version
en
dc.title
Optimal convergence rates in L² for a first order system least squares finite element method - part II: Inhomogeneous Robin boundary conditions