<div class="csl-bib-body">
<div class="csl-entry">Pluska, A., Welke, P., Gärtner, T., & Malhotra, S. (2024). Logical Distillation of Graph Neural Networks. In <i>ICML 2024 Workshop on Mechanistic Interpretability</i>. ICML 2024 Workshop on Mechanistic Interpretability, Vienna, Austria. https://doi.org/10.34726/7099</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203813
-
dc.identifier.uri
https://doi.org/10.34726/7099
-
dc.description.abstract
We distill a symbolic model from a Graph Neural Network (GNN). Recent results have shown connections between the expressivity of GNNs and the two-variable fragment of first-order logic with counting quantifiers C2. We use decision trees to represent formulas in an extension of C2 and present an algorithm to distill such decision trees from a given GNN model. We test our approach on multiple GNN architectures. The distilled models are interpretable, succinct, and attain similar accuracy to the underlying GNN. Furthermore, when the ground truth is expressible in C2, our approach outperforms the GNN.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Graph Neural Networks
en
dc.subject
C2
en
dc.subject
First-Order Logic
en
dc.subject
Model Distillation
en
dc.title
Logical Distillation of Graph Neural Networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/7099
-
dc.relation.grantno
ICT22-059
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
ICML 2024 Workshop on Mechanistic Interpretability
-
tuw.peerreviewed
true
-
tuw.project.title
Structured Data Learning with Generalized Similarities
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
dc.identifier.libraryid
AC17346630
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0002-7709-3335
-
tuw.author.orcid
0000-0002-2123-3781
-
tuw.author.orcid
0000-0001-5985-9213
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
ICML 2024 Workshop on Mechanistic Interpretability
en
tuw.event.startdate
27-07-2024
-
tuw.event.enddate
27-07-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vienna
-
tuw.event.country
AT
-
tuw.event.presenter
Pluska, Alexander
-
tuw.event.presenter
Welke, Pascal
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openaccessfulltext
Open Access
-
item.grantfulltext
open
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.mimetype
application/pdf
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0002-2123-3781
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds