<div class="csl-bib-body">
<div class="csl-entry">Eckhardt, J., & Kostenko, O. (2024). Trace formulas and inverse spectral theory for generalized indefinite strings. <i>Inventiones Mathematicae</i>. https://doi.org/10.1007/s00222-024-01287-9</div>
</div>
-
dc.identifier.issn
0020-9910
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203846
-
dc.description.abstract
Generalized indefinite strings provide a canonical model for self-adjoint operators with simple spectrum (other classical models are Jacobi matrices, Krein strings and 2×2 canonical systems). We prove a number of Szegő-type theorems for generalized indefinite strings and related spectral problems (including Krein strings, canonical systems and Dirac operators). More specifically, for several classes of coefficients (that can be regarded as Hilbert–Schmidt perturbations of model problems), we provide a complete characterization of the corresponding set of spectral measures. In particular, our results also apply to the isospectral Lax operator for the conservative Camassa–Holm flow and allow us to establish existence of global weak solutions with various step-like initial conditions of low regularity via the inverse spectral transform.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Inventiones Mathematicae
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Generalized indefinite strings
en
dc.subject
inverse spectral theory
en
dc.subject
trace formulas
en
dc.title
Trace formulas and inverse spectral theory for generalized indefinite strings