<div class="csl-bib-body">
<div class="csl-entry">Melenk, J. M., & Rojik, C. (2024). A note on the shift theorem for the Laplacian in polygonal domains. <i>Applications of Mathematics</i>, <i>69</i>(5), 653–693. https://doi.org/10.21136/AM.2024.0049-24</div>
</div>
-
dc.identifier.issn
0862-7940
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204214
-
dc.description.abstract
We present a shift theorem for solutions of the Poisson equation in a finite planar cone (and hence also on plane polygons) for Dirichlet, Neumann, and mixed boundary conditions. The range in which the shift theorem holds depends on the angle of the cone. For the right endpoint of the range, the shift theorem is described in terms of Besov spaces rather than Sobolev spaces.
en
dc.language.iso
en
-
dc.publisher
SPRINGERNATURE
-
dc.relation.ispartof
Applications of Mathematics
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
35B65
en
dc.subject
35J25
en
dc.subject
Besov space
en
dc.subject
corner domain
en
dc.subject
corner singularity
en
dc.subject
Mellin calculus
en
dc.title
A note on the shift theorem for the Laplacian in polygonal domains