<div class="csl-bib-body">
<div class="csl-entry">Melenk, J. M., & Sauter, S. A. (2024). Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Impedance Boundary Conditions. <i>Foundations of Computational Mathematics</i>, <i>24</i>(6), 1871–1939. https://doi.org/10.1007/s10208-023-09626-7</div>
</div>
-
dc.identifier.issn
1615-3375
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/206445
-
dc.description.abstract
The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nédélec elements of order p on a mesh with mesh size h is shown under the k-explicit scale resolution condition that (a) kh/p is sufficient small and (b) p/lnk is bounded from below.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Foundations of Computational Mathematics
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
High-frequency
en
dc.subject
Maxwell’s equations
en
dc.subject
Quasi-optimality
en
dc.subject
Time-harmonic
en
dc.subject
Wavenumber explicit
en
dc.subject
hp-FEM
en
dc.title
Wavenumber-Explicit hp-FEM Analysis for Maxwell's Equations with Impedance Boundary Conditions