<div class="csl-bib-body">
<div class="csl-entry">Bahr, B., Faustmann, M., & Melenk, J. M. (2024). An implementation of hp-FEM for the fractional Laplacian. <i>COMPUTERS & MATHEMATICS WITH APPLICATIONS</i>, <i>176</i>, 324–348. https://doi.org/10.1016/j.camwa.2024.10.005</div>
</div>
-
dc.identifier.issn
0898-1221
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/206446
-
dc.description.abstract
We consider the discretization of the 1d-integral Dirichlet fractional Laplacian by hp-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of hp-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is O(N5/2), where N is the problem size. Numerical examples illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for hp-finite element spaces based on shape regular meshes.
en
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
COMPUTERS & MATHEMATICS WITH APPLICATIONS
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
fractional Laplacian
en
dc.subject
finite element method
en
dc.subject
higher order methods
en
dc.subject
numerical integration
en
dc.title
An implementation of hp-FEM for the fractional Laplacian