<div class="csl-bib-body">
<div class="csl-entry">Bringmann, P. (2024). Review and computational comparison of adaptive least-squares finite element schemes. <i>COMPUTERS & MATHEMATICS WITH APPLICATIONS</i>, <i>172</i>, 1–15. https://doi.org/10.1016/j.camwa.2024.07.022</div>
</div>
-
dc.identifier.issn
0898-1221
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208760
-
dc.description.abstract
The convergence analysis for least-squares finite element methods led to various adaptive mesh-refinement strategies: Collective marking algorithms driven by the built-in a posteriori error estimator or an alternative explicit residual-based error estimator as well as a separate marking strategy based on the alternative error estimator and an optimal data approximation algorithm. This paper reviews and discusses available convergence results. In addition, all three strategies are investigated empirically for a set of benchmarks examples of second-order elliptic partial differential equations in two spatial dimensions. Particular interest is on the choice of the marking and refinement parameters and the approximation of the given data. The numerical experiments are reproducible using the author's software package octAFEM available on the platform Code Ocean.
en
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
COMPUTERS & MATHEMATICS WITH APPLICATIONS
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Adaptive mesh refinement
en
dc.subject
Alternative a posteriori error estimation
en
dc.subject
Data approximation
en
dc.subject
Least-squares finite element method
en
dc.subject
Numerical experiments
en
dc.subject
Separate marking
en
dc.title
Review and computational comparison of adaptive least-squares finite element schemes