<div class="csl-bib-body">
<div class="csl-entry">Weiss, R. (2025). <i>Evaluating Reinforcement-Learning-based Sepsis Treatments via Tabular and Continuous Stationary Distribution Correction Estimation</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.126219</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.126219
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208809
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This work presents the results of state-of-the-art offline behavior agnostic policy evaluation algorithms based on stationary distribution correction estimation, evaluated within a healthcare setting using data from the AmsterdamUMCdb. We firstly, present the theory of these algorithms. This includes the introduction of four tabular estimators and a revision of the well known DualDICE, GenDICE, and GradientDICE. All algorithms are implemented in a modular open source Python library. In order to evaluate the efficacy of the algorithms, they are tested in the environments BoyanChain as well as the OpenAI Gym applications FrozenLake, Taxi, and Cartpole. The continuous state space algorithms DualDICE, GenDICE, and GradientDICE are run directly on the healthcare dataset. Additionally, the state space of healthcare applications is clustered in order to perform policy evaluation in the tabular setting. Our analysis provides a comprehensive examination of the practical functioning of all estimators, elucidating the underlying theory and the connections between the results and the theory.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Reinforcement learning
en
dc.subject
Policy evaluation
en
dc.subject
Distribution correction estimation
en
dc.subject
Medical treatment policy
en
dc.title
Evaluating Reinforcement-Learning-based Sepsis Treatments via Tabular and Continuous Stationary Distribution Correction Estimation
en
dc.title.alternative
Evaluierung KI-basierter Sepsisbehandlungen mittels tabularer und kontinuierlicher Schätzung der Stationäreren Verteilung
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.126219
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Richard Weiss
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17408860
-
dc.description.numberOfPages
110
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.openaccessfulltext
Open Access
-
item.grantfulltext
open
-
item.openairetype
master thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.languageiso639-1
en
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering