<div class="csl-bib-body">
<div class="csl-entry">Cardoso, J. A. (2025). <i>Approaching Under-Explored Image-Space Problems with Optimization</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.128664</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.128664
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209309
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This doctoral dissertation delves into three distinct yet interconnected problems in the realm of interactive image-space computing in computer graphics, each of which has not been tackled by existing literature.The first problem centers on the prediction of visual error metrics in real-time applications, specifically in the context of content-adaptive shading and shading reuse. Utilizing convolutional neural networks, this research aims to estimate visual errors without requiring reference or rendered images. The models developed can account for 70%–90% of the variance and achieve computation times that are an order of magnitude faster than existing methods. This enables a balance between resource-saving and visual quality, particularly in deferred shading pipelines, and can achieve up to twice the performance compared to state-of-the-art methods depending on the portion of unseen image regions. The second problem focuses on the burgeoning field of light-field cameras and the challenges associated with depth prediction. This research argues for the refinement of cost volumes rather than depth maps to increase the accuracy of depth predictions. A set of cost-volume refinement algorithms is proposed, which dynamically operate at runtime to find optimal solutions, thereby enhancing the accuracy and reliability of depth estimation in light fields.The third problem tackles the labor-intensive nature of hand-drawn animation, specifically in the detailing of character eyes. An unsupervised network is introduced that blends inpainting and image-to-image translation techniques. This network employs a novel style-aware clustering method and a dual-discriminator optimization strategy with a triple-reconstruction loss. The result is an improvement in the level of detail and artistic consistency in hand-drawn animation, preferred over existing work 95.16% of the time according to a user study.Optimization techniques are the common thread that ties these problems together. While dynamic optimization at runtime is employed for cost volume refinement, deep-learning methods are used offline to train global solutions for the other two problems. This research not only fills gaps in the existing literature but also paves the way for future explorations in the field of computer graphics and optimization, offering new avenues for both academic research and practical applications.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
variable-rate shading
en
dc.subject
light-fields
en
dc.subject
limited animation
en
dc.subject
anime
en
dc.subject
convolutional neural networks
en
dc.title
Approaching Under-Explored Image-Space Problems with Optimization
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.128664
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Joao Afonso Cardoso
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17414787
-
dc.description.numberOfPages
110
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-6530-7244
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-9370-2663
-
item.openairetype
doctoral thesis
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.orcid
0000-0002-6530-7244
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology