<div class="csl-bib-body">
<div class="csl-entry">Bužančić, M., Davoli, E., & Velčić, I. (2025). Effective quasistatic evolution models for perfectly plastic plates with periodic microstructure: The limiting regimes. <i>Advances in Calculus of Variations</i>, <i>17</i>(4), 1399–1444. https://doi.org/10.1515/acv-2023-0020</div>
</div>
-
dc.identifier.issn
1864-8258
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209342
-
dc.description.abstract
We identify effective models for thin, linearly elastic and perfectly plastic plates exhibiting a microstructure resulting from the periodic alternation of two elastoplastic phases. We study here both the case in which the thickness of the plate converges to zero on a much faster scale than the periodicity parameter and the opposite scenario in which homogenization occurs on a much finer scale than dimension reduction. After performing a static analysis of the problem, we show convergence of the corresponding quasistatic evolutions. The methodology relies on two-scale convergence and periodic unfolding, combined with suitable measure-disintegration results and evolutionary Γ-convergence.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
WALTER DE GRUYTER GMBH
-
dc.relation.ispartof
Advances in Calculus of Variations
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
dimension reduction
en
dc.subject
Perfect plasticity
en
dc.subject
periodic homogenization
en
dc.subject
quasistatic evolution
en
dc.subject
rate-independent processes
en
dc.subject
Γ-convergence
en
dc.title
Effective quasistatic evolution models for perfectly plastic plates with periodic microstructure: The limiting regimes