<div class="csl-bib-body">
<div class="csl-entry">AL-Zu’bi, M., & Weissenbacher, G. (2024). Statistical Profiling of Micro-Architectural Traces and Machine Learning for Spectre Detection: A Systematic Evaluation. In A. Pimentel & V. Bertacco (Eds.), <i>2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)</i>. https://doi.org/10.34726/8339</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209424
-
dc.identifier.uri
https://doi.org/10.34726/8339
-
dc.description.abstract
Spectre attacks exploit features of modern processors to leak sensitive data through speculative execution and shared resources (such as caches). A popular approach to detect such attacks deploys Machine Learning (ML) to identify suspicious micro-architectural patterns. These techniques, however, are often rather ad-hoc in terms of the selection of micro-architectural features as well as ML techniques and frequently lack a description of the underlying training- and test-data. To address these shortcomings, we systematically evaluate a large range of (combinations of) micro-architectural features recorded in up to 40 Hardware Performance Counters (HPCs), as well as multiple ML algorithms on a comprehensive set of scenarios and datasets. Using statistical methods, we rank the HPCs used to generate our dataset, which helps us determine the minimum number of features required for detecting Spectre attacks with high accuracy and minimal overhead. Furthermore, we identify the best-performing ML classifiers, and provide a comprehensive description of our data collection, running scenarios, selected HPCs, and chosen classification models.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Security
en
dc.subject
Hardware Performance Counters
en
dc.subject
Spectre
en
dc.title
Statistical Profiling of Micro-Architectural Traces and Machine Learning for Spectre Detection: A Systematic Evaluation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/8339
-
dc.contributor.editoraffiliation
University of Amsterdam, Netherlands (the)
-
dc.contributor.editoraffiliation
University of Michigan–Ann Arbor, United States of America (the)
-
dc.relation.isbn
979-8-3503-4859-0
-
dc.relation.doi
10.23919/DATE58400.2024
-
dc.relation.grantno
VRG11-005
-
dc.relation.grantno
W 1255-N23
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1558-1101
-
tuw.booktitle
2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)
-
tuw.peerreviewed
true
-
tuw.project.title
Heisenbugs: Auffindung und Erklärung
-
tuw.project.title
Doktoratskolleg
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
tuw.publisher.doi
10.23919/DATE58400.2024.10546539
-
dc.identifier.libraryid
AC17417373
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0002-2043-4469
-
tuw.editor.orcid
0000-0002-0319-3368
-
tuw.event.name
Design, Automation & Test in Europe Conference (DATE)
en
tuw.event.startdate
25-03-2024
-
tuw.event.enddate
27-03-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Valencia
-
tuw.event.country
ES
-
tuw.event.presenter
AL-Zu'bi, Mai
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds