<div class="csl-bib-body">
<div class="csl-entry">Kadic, M. (2025). <i>Automated Analysis of the Vienna ”Naturhistorisches Museum” Herbarium Collection</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.111382</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.111382
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209510
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Herbaria are collections of preserved plant specimens, accompanied by metadata such as species classification, collection location, and collector information. This thesis applies deep learning techniques to analyze herbarium specimen images by utilizing both visual and textual data, including handwritten labels, printed metadata, and specimen features.The primary objective is to develop a self-supervised deep learning model using contrastive learning, which clusters similar data points without requiring labeled data. This approach addresses the variability in herbarium collections and enables robust plant classification into families, genera, and species. Unlike supervised methods, this approach leverages convolutional neural networks to learn meaningful representations of specimens without the need for explicit class labels during training.To enhance the analysis, Handwritten Text Recognition (HTR) and Optical Character Recognition (OCR) methods are applied to extract textual information from specimen labels. The accuracy of these methods is evaluated by comparing predicted text against ground truth data.A visualization tool is developed within this thesis to allow researchers to explore clusters of related specimens based on model embeddings. This tool facilitates the analysis of individual specimens and provides access to associated metadata for deeper insights. Additionally, a segmentation dataset for dried plant parts is created to improve image analysis.This work demonstrates the effectiveness of self-supervised learning in herbarium specimen classification, offering a scalable, generalizable alternative to supervised methods while supporting advanced botanical research.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Herbarium Analysis
de
dc.subject
Self-Supervised Learning
de
dc.subject
Plant Classification
de
dc.subject
Herbarium Analysis
en
dc.subject
Self-Supervised Learning
en
dc.subject
Plant Classification
en
dc.title
Automated Analysis of the Vienna ”Naturhistorisches Museum” Herbarium Collection
en
dc.title.alternative
Automatisierte Analyse der Herbariumsammlung des Naturhistorischen Museums Wien
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.111382
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Marko Kadic
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Kleber, Florian
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17416124
-
dc.description.numberOfPages
80
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-8004-6839
-
tuw.assistant.orcid
0000-0001-8351-5066
-
item.openairetype
master thesis
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E193-04 - Forschungsbereich Multidisciplinary Design and User Research
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology