<div class="csl-bib-body">
<div class="csl-entry">Korchemna, V. (2025). <i>Graph Parameters: Structural Properties and Algorithmic Applications</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.128801</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.128801
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209573
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Parameterized complexity provides a rich toolbox for dealing with intractable problems that arise in different areas of computer science. One of the main aims here is to obtain a more fine-grained complexity analysis of computationally hard problems based not only on the input size but also on some parameter. The analogues of polynomially solvable problems here are fixed-parameter tractable problems, which admit an algorithm with running time f(k) · n^O(1) for some computable function f, where n is an input size and k is a parameter. In this work, we investigate the parameterized complexity of problems whose instances admit graph representations, so the parameters we consider are tied to structural properties of the input graph. We focus on decompositional graph parameters, which allow to decompose graphs into components along some tree-like structure.Among the decompositional graph parameters, the most prominent is treewidth, which measures the treelikeness of a graph in terms of vertex separators. To handle problems where it does not help to achieve fixed-parameter tractability, more restrictive vertex-cut based parameters such as pathwidth, treedepth, or vertex cover number are commonly used. However, for some problems, it is natural to consider edge-cut-based parameters instead, and here the choice is much more limited, leaving large gaps in the understanding of complexity of these problems. Our aim in this work is to fill this gap in the hierarchy of edge-cut based graph parameters. As our main contribution, we introduce a new parameter slim tree-cut width which is a restriction of tree-cut width, and show that it is a perfect fit for a number of classical graph problems where the parameterization by the latter does not help.We perform a deep theoretical study of the structural properties of slim tree-cut width. In particular, we provide three equivalent characterizations of the parameter: (i) actual slim tree-cut width, defined with the help of tree-cut decompositions and inheriting many advantages of the tree-cut width, (ii) super edge-cut width, providing an easy-to-use in algorithms decomposition in terms of a spanning tree, and (iii) the characterization in terms of block decompositions, allowing to decompose graph into components of small treewidth and maximum degree. We provide multiple examples witnessing that slim tree-cut width and other edge-cut based parameters help achieve tractability not only in many classical graph problems but also in some fundamental problems originating from AI, such as data completion and causal network learning.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
parameterized complexity
en
dc.subject
FPT algorithms
en
dc.subject
structural graph parameters
en
dc.subject
decompositional parameters
en
dc.subject
slim tree-cut width
en
dc.subject
dynamic programming
en
dc.subject
tree decompositions.
en
dc.title
Graph Parameters: Structural Properties and Algorithmic Applications
en
dc.title.alternative
Graphenparameter: Strukturelle Eigenschaften und Algorithmische Anwendungen
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.128801
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Viktoria Korchemna
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17416661
-
dc.description.numberOfPages
129
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-7762-8045
-
item.openairetype
doctoral thesis
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity