Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2025). On full linear convergence and optimal complexity of adaptive FEM with inexact solver. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 180, 102–129. https://doi.org/10.1016/j.camwa.2024.12.013
Adaptive finite element method; Cost-optimality; Full linear convergence; Inexact solvers; Optimal convergence rates; optimal computational cost
en
Abstract:
The ultimate goal of any numerical scheme for partial differential equations (PDEs) is to compute an approximation of user-prescribed accuracy at quasi-minimal computation time. To this end, algorithmically, the standard adaptive finite element method (AFEM) integrates an inexact solver and nested iterations with discerning stopping criteria balancing the different error components. The analysis ensuring optimal convergence order of AFEM with respect to the overall computational cost critically hinges on the concept of R-linear convergence of a suitable quasi-error quantity. This work tackles several shortcomings of previous approaches by introducing a new proof strategy. Previously, the analysis of the algorithm required several parameters to be fine-tuned. This work leaves the classical reasoning and introduces a summability criterion for R-linear convergence to remove restrictions on those parameters. Second, the usual assumption of a (quasi-)Pythagorean identity is replaced by the generalized notion of quasi-orthogonality from Feischl (2022) [22]. Importantly, this paves the way towards extending the analysis of AFEM with inexact solver to general inf-sup stable problems beyond the energy minimization setting. Numerical experiments investigate the choice of the adaptivity parameters.
en
Projekttitel:
Theorie und Numerik der gekoppelten Maxwell-LLG Gleichungen: I 6667-N (FWF - Österr. Wissenschaftsfonds) Funktionale Fehlerschätzungen für PDEs auf unbegrenzten Domänen: I 6802-N (FWF - Österr. Wissenschaftsfonds) Computational nonlinear PDEs: P 33216-N (FWF - Österr. Wissenschaftsfonds) Neue Herausforderungen in optimaler Adaptivität: 101125225 - OPTIMAL (European Commission)