<div class="csl-bib-body">
<div class="csl-entry">Mielke-Sulz, F. (2025). <i>Isoperimetric Inequalities for affine and dual affine quermassintegrals</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.125795</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.125795
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210133
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
In convex geometry, affine quermassintegrals are important quantities in the for studyof geometric inequalities. Lutwak introduced two types of these integrals: the dualaffine quermassintegrals, denoted by ˜Φk and the affine quermassintegrals, denoted byΦk. Of special interest are the isoperimetric inequalities associated with these integrals.For the dual affine quermassintegrals ˜Φk, this involves finding sharp upper bounds andidentifying the convex bodies of a given volume that achieve equality. For the affinequermassintegrals Φk, the goal is to establish sharp lower bounds and determine theconvex bodies that minimize them.The isoperimetric inequality for the dual affine quermassintegrals ˜Φk was proven earlier, with the inequality shown in [BS60] and the cases of equality discussed by Grinbergin [Gri91]. In contrast, the isoperimetric inequality for the affine quermassintegrals Φkremained an unsolved problem for many years. It was only in 2022 that this inequalitywas finally proven by E. Milman and Yehudayoff in [MY23].In this thesis, we give a self-contained presentation of the proofs of the isoperimetricinequalities for ˜Φk and Φk, establish the equality cases, and examine some of their prop-erties. Additionally, we will discuss some consequences of the isoperimetric inequalityand highlight important special cases that serve as fundamental tools in affine convexgeometry.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
convex bodies
en
dc.subject
isoperimetric inequalities
en
dc.subject
affine quermassintegrals
en
dc.title
Isoperimetric Inequalities for affine and dual affine quermassintegrals
en
dc.title.alternative
Isoperimetrische Ungleichungen für affine und duale affine Quermassintegrale
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.125795
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Florian Mielke-Sulz
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17421061
-
dc.description.numberOfPages
68
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openairetype
master thesis
-
item.openaccessfulltext
Open Access
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie