<div class="csl-bib-body">
<div class="csl-entry">Eiter, T., Hadl, J., Higuera Ruiz, N. N., & Oetsch, J. (2024). Declarative Knowledge Distillation from Large Language Models forVisual Question Answering Datasets. In K. Satoh, H.-T. Nguyen, & F. Toni (Eds.), <i>Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024)</i>. https://doi.org/10.48550/ARXIV.2410.09428</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210854
-
dc.description.abstract
Visual Question Answering (VQA) is the task of answering a question about an image and requires processing multimodal input and reasoning to obtain the answer. Modular solutions that use declarative representations within the reasoning component have a clear advantage over end-to-end trained systems regarding interpretability. The downside is that crafting the rules for such a component can be an additional burden on the developer. We address this challenge by presenting an approach for declarative knowledge distillation from Large Language Models (LLMs). Our method is to prompt an LLM to extend an initial theory on VQA reasoning, given as an answer-set program, to meet the requirements of the VQA task. Examples from the VQA dataset are used to guide the LLM, validate the results, and mend rules if they are not correct by using feedback from the ASP solver. We demonstrate that our approach works on the prominent CLEVR and GQA datasets. Our results confirm that distilling knowledge from LLMs is in fact a promising direction besides data-driven rule learning approaches.
en
dc.description.sponsorship
Robert Bosch GmbH
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
visual question answering
en
dc.subject
neurosymbolic AI
en
dc.subject
answer set programming
en
dc.title
Declarative Knowledge Distillation from Large Language Models forVisual Question Answering Datasets
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
Jönköping University, Sweden
-
dc.relation.doi
10.48550/arXiv.2410.05339
-
dc.relation.grantno
114402 - TU Wien - Bosch
-
dc.rights.holder
Authors
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024)
-
tuw.peerreviewed
true
-
tuw.project.title
Advanced context-based reasoning over heterogeneous data sources
-
tuw.researchinfrastructure
Vienna Scientific Cluster
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.linking
https://github.com/pudumagico/KR2024
-
tuw.publication.orgunit
E192-03 - Forschungsbereich Knowledge Based Systems
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.48550/ARXIV.2410.09428
-
dc.identifier.libraryid
AC17426707
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0001-6003-6345
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0002-9309-4602
-
tuw.event.name
First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024)
en
tuw.event.startdate
04-11-2024
-
tuw.event.enddate
04-11-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Hanoi
-
tuw.event.country
VN
-
tuw.event.institution
KR, Inc.
-
tuw.event.presenter
Higuera Ruiz, Nelson Nicolas
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems