<div class="csl-bib-body">
<div class="csl-entry">Kersten, W. N. (2025). <i>A Masing Diamond: Triggered and Self-Induced Superradiance</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.126843</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.126843
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/212944
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
In this work, I present experimental studies of cavity quantum electrodynamics (cQED) with a focus on superradiant emission from a hybrid system of nitrogen-vacancy (NV) centers in diamond strongly coupled to a microwave cavity. The research centers on two key experiments that investigate superradiance, a collective phenomenon where synchronized emitters generate a coherent burst of radiation with nonlinear intensity scaling, facilitated by their common coupling to the cavity mode. First, I demonstrate a protocol for generating and storing a uniformly inverted spin ensemble, enabling the controlled release of a superradiant burst. By extending the inversion storage time for up to tens of milliseconds, I achieve a fully upright, metastable spin state with vanishing transverse spin components. I explore the onset of superradiance, revealing that weak microwave trigger pulses on the order of 10−11 photons per spin are sufficient to influence the superradiant decay in both timing and phase. Second, following the initial decay, I observe unexpected self-induced superradiant dynamics that evolve from a periodic pulsing regime into quasi-continuous masing, lasting up to a millisecond. This behavior, which cannot be explained by known cQED effects, is driven by direct spin-spin interactions that redistribute the spectral spin inversion within the inhomogeneously broadened NV ensemble. These findings reveal a new role for spin-spin interactions as an active drive of superradiant emission, rather than merely a source of decoherence. The experimental results are prefaced by a theoretical framework and numerical simulations. Additionally, I present microwave cavity designs aimed at achieving strong and uniform spin coupling with reduced mode volumes. These designs, realized through f inite-element simulations and experiments, explore a range of resonator types — from bulk copper and superconducting niobium to on-chip, nano-fabricated structures — paving the way for future cQED experiments and quantum technology applications.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Superradiance
en
dc.subject
Nitrogen-vacancy centers
en
dc.subject
Dimoand maser
en
dc.subject
Self-induced masing
en
dc.subject
Spin-spin interactions
en
dc.subject
Spectral hole filling
en
dc.subject
Cavity quantum electrodynamics
en
dc.subject
spin ensemble dynmaics
en
dc.subject
Solid-state hybrid quantum systems
en
dc.title
A Masing Diamond: Triggered and Self-Induced Superradiance
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.126843
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Wenzel Nikolaus Kersten
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E141 - Atominstitut
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17455781
-
dc.description.numberOfPages
204
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E141-02 - Forschungsbereich Atom Physics and Quantum Optics