<div class="csl-bib-body">
<div class="csl-entry">Lee, B. (2025). <i>Survival Analysis Model to Predict Customer Churn in the Edtech Sector</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.124833</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.124833
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213329
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This thesis explores the application of survival analysis models to predict customer churn in the edtech sector, an area of growing importance for subscription-based businesses. By leveraging statistical and machine learning techniques, the study aims to improve retention models over existing heuristic methods and identify key variables influencing churn behaviour. The research focuses on using survival analysis, a statistical framework adept at handling censored data, to predict customer churn and retention duration, providing more precise and actionable insights.Drawing from a dataset comprising several hundred thousand customer records with both time-variant and time-invariant features, this study evaluates classical survival models, including Kaplan-Meier and Cox Proportional Hazards models, as well as advanced machine learning techniques like Random Survival Forests and Gradient Boosting Machines. The incorporation of time-variant data, a novel aspect of this study, enhances model sophistication and predictive capability.Results demonstrate that machine learning models outperform traditional heuristic approaches, achieving higher concordance index and lower integrated Brier scores. Permutation importance methods highlighted variables and features which strongly affected survival time and its inverse: customer churn. Time-variant data was found to further improve model performance although caution must be exercised to ensure correct interpretation of results. This work contributes to the literature by extending survival analysis applications to the edtech sector, where customer retention is critical for sustainable growth. The developed models form a basis as a testbed for further analysis as new hypothesised variables come in for testing. However, the lack of readily-available libraries for time-variant analysis, particularly in Python both highlight the cutting edge nature of time-variant survival analysis, as well as the risks of productionising time-variant methodologies.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Survival Analysis
en
dc.subject
Customer Churn
en
dc.subject
Parametric Models
en
dc.subject
Machine Learning
en
dc.subject
Random Survival Forests
en
dc.subject
Cox Proportional Hazards
en
dc.subject
Time-Variant Data
en
dc.title
Survival Analysis Model to Predict Customer Churn in the Edtech Sector
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.124833
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Benjamin Lee
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E180 - Fakultät für Informatik
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17470386
-
dc.description.numberOfPages
72
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-8014-4682
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openairetype
master thesis
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering