Taranto, P., Lipka-Bartosik, P., Rodríguez-Briones, N. A., Perarnau-Llobet, M., Friis, N., Huber, M., & Bakhshinezhad, P. (2025). Efficiently Cooling Quantum Systems with Finite Resources: Insights from Thermodynamic Geometry. Physical Review Letters, 134(7), Article 070401. https://doi.org/10.1103/PhysRevLett.134.070401
Landauer's limit on heat dissipation during information erasure is critical as devices shrink, requiring optimal pure-state preparation to minimize errors. However, Nernst's third law states this demands infinite resources in energy, time, or control complexity. We address the challenge of cooling quantum systems with finite resources. Using Markovian collision models, we explore resource trade-offs and present efficient cooling protocols (that are optimal for qubits) for coherent and incoherent control. Leveraging thermodynamic length, we derive bounds on heat dissipation for swap-based strategies and discuss the limitations of preparing pure states efficiently.
en
Project title:
Verschränkungsbasierte Zertifizierung von Quantentechnologie: P 36478 (FWF - Österr. Wissenschaftsfonds) Control and complexity in quantum statistical mechanics: 101043705 (European Commission) High-Performance integrated Quantum Computing: 45285029 (FFG - Österr. Forschungsförderungs- gesellschaft mbH) FUELING QUANTUM FIELD MACHINES WITH INFORMATION: FQXi-IAF19-03-S1 (Vereine, Stiftungen, Preise) HORIZON-CL4-2021-DIGITAL-EMERGING-02: 101080167 (European Commission) Emergence of Objective Reality: from Qubit to Oscilloscope: ID: 62423 (John Templeton Foundation) High-Performance integrated Quantum Computing: 897481 (FFG - Österr. Forschungsförderungs- gesellschaft mbH)
-
Research Areas:
Quantum Modeling and Simulation: 40% Quantum Many-body Systems Physics: 30% Design and Engineering of Quantum Systems: 30%