<div class="csl-bib-body">
<div class="csl-entry">Brunner, M., Praetorius, D., & Streitberger, J. (2025). Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs. <i>Numerische Mathematik</i>, <i>157</i>, 409–445. https://doi.org/10.1007/s00211-025-01455-w</div>
</div>
-
dc.identifier.issn
0029-599X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213708
-
dc.description.abstract
We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Numerische Mathematik
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
adaptive iterative linearized finite element method
en
dc.subject
semilinear PDEs
en
dc.subject
iterative solver
en
dc.subject
a posteriori error estimation
en
dc.subject
convergence
en
dc.subject
optimal convergence rates
en
dc.subject
cost-optimality
en
dc.title
Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs