<div class="csl-bib-body">
<div class="csl-entry">Gerencsér, M., & Toninelli, F. L. (2025). Weak coupling limit of KPZ with rougher than white noise. <i>Electronic Communications in Probability</i>, <i>30</i>, Article 34. https://doi.org/10.1214/25-ECP675</div>
</div>
-
dc.identifier.issn
1083-589X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/215345
-
dc.description.abstract
We consider the KPZ equation in 1 spatial dimension with noise that is rougher than white by an exponent γ > 1/4. Under a weak coupling limit, formally removing the nonlinearity from the equation, we show using regularity structures that the renormalised solutions converge to a Gaussian limit that is different from the solution of the linear part of the equation. The regime of this effect has a nontrivial overlap with the subcritical regime γ < 1/2.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
Institute of Mathematical Statistics (IMS)
-
dc.relation.ispartof
Electronic Communications in Probability
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
KPZ equation
en
dc.subject
weak coupling
en
dc.subject
regularity structures
en
dc.subject
stochastic partial differential equations
en
dc.title
Weak coupling limit of KPZ with rougher than white noise
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.relation.grantno
101117125
-
dc.relation.grantno
P 35428-N
-
dc.type.category
Original Research Article
-
tuw.container.volume
30
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Stochastische PDEs und Renormierung
-
tuw.project.title
Stochastische Oberflächen: Wachstum und Universalität