<div class="csl-bib-body">
<div class="csl-entry">Azzouz, N. (2025). <i>Tree compression</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.129101</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.129101
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/216218
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
In this thesis, we investigate different compression methods for plane tree data structures. Data compression is a critical component of efficient storage and processing of information. The three major lossless compression methods that are investigated include minimal directed acyclic graph (minimal DAG) compression, grammar-based tree compression, and entropy-based compression. The analysis of the compression quality achieved by minimal DAG compression relies on analytic combinatorics, discrete methods, and complex analysis. This first compression technique is studied in detail and includes an efficient linear-time algorithm for constructing the minimal DAG of a given tree. The optimization of grammar-based tree compression relies solely on profitable heuristics, since it is NP-hard to find the smallest tree grammar for a given tree. Grammar-based tree compression is an extension of classical information-theoretic compression for strings. Naturally, in this way, we can obtain universally optimal tree compression algorithms for a variety of tree classes. This extension is formalized through tree straight-line programs, which can perform exponentially better than minimal DAG compression in certain cases. In recent years, the concept of entropy has been extended from strings to trees. This enables the development of information-theoretically optimal compression schemes based on probabilistic models of tree generation. Two such algorithms are studied in detail: an arithmetic coding based algorithm for search trees and increasing trees, which achieves average code lengths within a constant number of bits from the entropy, and the universal and asymptotically optimal hypersuccinct trees, a recent method that partitions trees into micro-trees, compresses them according to their frequency, and supports constant-time navigation within optimal space bounds.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
combinatorics
en
dc.subject
asymptotic enumeration
en
dc.subject
compression algorithms
en
dc.subject
information theory
en
dc.title
Tree compression
en
dc.title.alternative
Baumkompression
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.129101
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Nadja Azzouz
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17562558
-
dc.description.numberOfPages
78
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.openairetype
master thesis
-
item.openaccessfulltext
Open Access
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie