<div class="csl-bib-body">
<div class="csl-entry">Pezo, I. (2025). <i>Multilingual and Crosslingual Fact-Checked Claim Retrieval</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.126700</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.126700
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/216220
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
With the growing influence of social media, ensuring the accuracy of online information has become increasingly important. Automated fact-checking involves multiple stages, including claim detection, prioritization, retrieval of evidence, veracity prediction, and explanation generation. A crucial yet often overlooked component is retrieving previously fact-checked claims, which helps combat misinformation by matching new claims with existing fact-checks.In this work, we develop a multilingual and crosslingual fact-checked claim retrieval system based on a hybrid retrieval pipeline that combines lexical and dense retrieval models. We systematically evaluate different retrieval and reranking strategies, demonstrating that hybrid ensembles effectively balance efficiency and effectiveness, outperforming individual retrievers. While reranking significantly enhances crosslingual retrieval, its impact in monolingual settings remains limited, highlighting the effectiveness of well-designed ensembling over increasing complex ranking layers.Additionally, we analyze the impact of preprocessing steps, compare models in terms of retrieval performance, execution time, number of parameters and memory usage, and conduct an error analysis to identify key limitations. Finally, we discuss potential improvements and future research directions to enhance multilingual fact-check retrieval.Our approach was applied to SemEval-2025 Task 7, where we present results and insights gained from our participation.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Information Retrieval
en
dc.subject
Natural Language Processing
en
dc.subject
Fact Checking
en
dc.subject
Retrieval
en
dc.subject
Reranking
en
dc.subject
Large Language Models
en
dc.title
Multilingual and Crosslingual Fact-Checked Claim Retrieval
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.126700
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Iva Pezo
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Staudinger, Moritz
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering