Large unlabeled datasets demand efficient and scalable data labeling solutions, in particular when the number of instances and classes is large. This leads to significant visual scalability challenges and imposes a high cognitive load on the users. Traditional instance-centric labeling methods, where (single) instances are labeled in each iteration struggle to scale effectively in these scenarios. To address these challenges, we introduce cVIL, a Class-Centric Visual Interactive Labeling methodology designed for interactive visual data labeling. By shifting the paradigm from assigning-classes-to-instances to assigning-instances-to-classes, cVIL reduces labeling effort and enhances efficiency for annotators working with large, complex and class-rich datasets. We propose a novel visual analytics labeling interface built on top of the conceptual cVIL workflow, enabling improved scalability over traditional visual labeling. In a user study, we demonstrate that cVIL can improve labeling efficiency and user satisfaction over instance-centric interfaces. The effectiveness of cVIL is further demonstrated through a usage scenario, showcasing its potential to alleviate cognitive load and support experts in managing extensive labeling tasks efficiently.
en
Project title:
Joint Human-Machine Data Exploration: P 36453-N (FWF - Österr. Wissenschaftsfonds)
-
Project (external):
FFG FFG
-
Project ID:
898085 FO999904624
-
Research Areas:
Visual Computing and Human-Centered Technology: 100%