E194-06 - Forschungsbereich Machine Learning E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML) E192-02 - Forschungsbereich Databases and Artificial Intelligence E056-26 - Fachbereich Automated Reasoning
-
Zeitschrift:
Transactions on Machine Learning Research
-
Datum (veröffentlicht):
Jan-2025
-
Umfang:
20
-
Verlag:
Transactions on Machine Learning Research
-
Peer Reviewed:
Ja
-
Keywords:
Machine Learning; Graph Neural Networks; Weisfeiler-Leman (WL) Test; Outerplanar Graphs; Theory and Expressivity in GNNs
en
Abstract:
We propose a linear time graph transformation that enables the Weisfeiler-Leman (WL) algorithm and message passing graph neural networks (MPNNs) to be maximally expressive on outerplanar graphs. Our approach is motivated by the fact that most pharmaceutical molecules correspond to outerplanar graphs. Existing research predominantly enhances the
expressivity of graph neural networks without specific graph families in mind. This often leads to methods that are impractical due to their computational complexity. In contrast, the restriction to outerplanar graphs enables us to encode the Hamiltonian cycle of each biconnected component in linear time. As the main contribution of the paper we prove that our method achieves maximum expressivity on outerplanar graphs. Experiments confirm that our graph transformation improves the predictive performance of MPNNs on molecular benchmark datasets at negligible computational overhead.