<div class="csl-bib-body">
<div class="csl-entry">Carrillo, J. A., Chen, X., Du, B., & Jüngel, A. (2025). Fluid Relaxation Approximation of the Busenberg–Travis Cross-Diffusion System. <i>Communications in Mathematical Physics</i>, <i>406</i>(7), Article 151. https://doi.org/10.1007/s00220-025-05341-2</div>
</div>
-
dc.identifier.issn
0010-3616
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219264
-
dc.description.abstract
The Busenberg-Travis cross-diffusion system for segregating populations is approximated by the compressible Navier-Stokes-Korteweg equations on the torus, including a density-dependent viscosity and drag forces. The Korteweg term can be associated to the quantum Bohm potential. The singular asymptotic limit is proved rigorously using compactness and relative entropy methods. The novelty is the derivation of energy and entropy inequalities, which reduce in the asymptotic limit to the Boltzmann-Shannon and Rao entropy inequalities, thus revealing the double entropy structure of the limiting Busenberg-Travis system.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Communications in Mathematical Physics
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Busenberg–Travis Cross-Diffusion System
en
dc.title
Fluid Relaxation Approximation of the Busenberg–Travis Cross-Diffusion System