<div class="csl-bib-body">
<div class="csl-entry">Ahmed, T., Isied, M., & Souliman, M. I. (2025). A comparative analysis of machine learning models for predicting faulting in jointed plain concrete pavements. In L. Eberhardsteiner, B. Hofko, & R. Blab (Eds.), <i>Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria</i> (pp. 535–538). TU Wien, E230-03 Road Engineering. https://doi.org/10.34726/10779</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219288
-
dc.identifier.uri
https://doi.org/10.34726/10779
-
dc.description.abstract
Faulting is defined by variations in elevation at transverse joints in Jointed Plain Concrete Pave- ments resulting from environmental factors, subgrade properties, and traffic loads. It is a major distress for rigid pavements, possessing crucial challenges for maintaining road safety standards. Traditional regression methods often fail to address the complexities of faulting, while machine learning approach utilizes data driven learning to enhance prediction accuracy. Datasets for this study were sourced from the LTPP database, focusing on dry climate zones. Key environmental factors affecting wheel path faulting include Yearly Precipitation, Tempera- ture, Freeze-Thaw Cycles, along with structural properties such as Pavement Thickness, Pavement Age, Tensile Strength, and Optimum Moisture Content are utilized as model input. Five machine learning methodologies, including Support Vector Machine, Decision Tree, Linear Discriminant Analysis, Ensemble and Artificial Neural Network were implemented. Among these, ANN demonstrated highest prediction accuracy, attaining an R² of 0.81. The ANN model was further evaluated to assess the influence of the input variables on the model output through sensitivity analysis.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Faulting
en
dc.subject
Machine Learning
en
dc.subject
Environmental Factors
en
dc.subject
Artificial Neural Networks
en
dc.subject
Sensitivity Analysis
en
dc.title
A comparative analysis of machine learning models for predicting faulting in jointed plain concrete pavements
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/10779
-
dc.contributor.affiliation
The University of Texas at Tyler, United States of America (the)
-
dc.contributor.affiliation
The University of Texas at Tyler, United States of America (the)
-
dc.contributor.affiliation
The University of Texas at Tyler, United States of America (the)
-
dc.relation.isbn
978-3-901912-99-3
-
dc.relation.doi
10.34726/9259
-
dc.description.startpage
535
-
dc.description.endpage
538
-
dc.rights.holder
TU Wien, E230-03 Road Engineering
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria
-
tuw.container.volume
IV
-
tuw.book.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
tuw.relation.publisher
TU Wien, E230-03 Road Engineering
-
tuw.relation.publisherplace
Wien
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Structure-Property Relationsship
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
35
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
35
-
tuw.publication.orgunit
E000 - Technische Universität Wien
-
dc.identifier.libraryid
AC17644054
-
dc.description.numberOfPages
4
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0003-2153-9315
-
tuw.editor.orcid
0000-0002-8329-8687
-
tuw.editor.orcid
0000-0003-4101-1964
-
tuw.event.name
Advances in Materials and Pavement Performance Prediction 2025 (AM3P 2025)
en
tuw.event.startdate
07-05-2025
-
tuw.event.enddate
09-05-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
TU Wien/E230-03
-
tuw.event.presenter
Ahmed, T.
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Bauingenieurwesen
-
wb.sciencebranch
Verkehrswesen
-
wb.sciencebranch.oefos
2011
-
wb.sciencebranch.oefos
2013
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
70
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openairetype
conference paper
-
item.openaccessfulltext
Open Access
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
The University of Texas at Tyler, United States of America (the)
-
crisitem.author.dept
The University of Texas at Tyler, United States of America (the)
-
crisitem.author.dept
The University of Texas at Tyler, United States of America (the)