<div class="csl-bib-body">
<div class="csl-entry">Acharjee, P. K., Ahmed, A., Ahmed, T., Isied, M., Soulimann, M. I., & Akhnoukh, A. (2025). Climate and traffic input based International Roughness Index (IRI) prediction model for rigid pavements using Artificial Neural networks (ANN). In L. Eberhardsteiner, B. Hofko, & R. Blab (Eds.), <i>Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria</i> (pp. 531–534). TU Wien, E230-03 Road Engineering. https://doi.org/10.34726/10783</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219292
-
dc.identifier.uri
https://doi.org/10.34726/10783
-
dc.description.abstract
The International Roughness Index (IRI) is a widely used measure of the roughness of road surfaces and ride quality. The Federal Highway Administration (FHWA) has required States' Departments of Transportation (DOT) to include IRI values in their Pavement Management Systems (PMS) since 1990. However, IRI data collection can be challenging due to cost and resource constraints. This study presents an IRI prediction model for rigid pavements for three south Atlantic states of North Carolina, South Carlina, and Virginia. Utilizing climate and traffic data from the Long-Term Pavement Performance (LTPP) database, an Artificial Neural Networks (ANN) was developed to predict IRI. The R2 for the developed model is 0.84. Sensitivity analysis of the model showed that climate factors have more influence on IRI. In addition, a closed-form stand- alone equation is also extracted from the model, which Local transportation agencies can leverage to predict IRI using available climate and traffic data.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
International Roughness Index
en
dc.subject
Pavement Management Systems
en
dc.subject
Artificial Neural Networks
en
dc.subject
Climate Factors
en
dc.subject
Prediction Model
en
dc.title
Climate and traffic input based International Roughness Index (IRI) prediction model for rigid pavements using Artificial Neural networks (ANN)
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/10783
-
dc.contributor.affiliation
The University of Texas at Tyler, United States of America (the)
-
dc.contributor.affiliation
The University of Texas at Tyler, United States of America (the)
-
dc.contributor.affiliation
The University of Texas at Tyler, United States of America (the)
-
dc.contributor.affiliation
The University of Texas at Tyler, United States of America (the)
-
dc.contributor.affiliation
The University of Texas at Tyler, United States of America (the)
-
dc.contributor.affiliation
East Carolina University, United States of America (the)
-
dc.relation.isbn
978-3-901912-99-3
-
dc.relation.doi
10.34726/9259
-
dc.description.startpage
531
-
dc.description.endpage
534
-
dc.rights.holder
TU Wien, E230-03 Road Engineering
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria
-
tuw.container.volume
IV
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
tuw.relation.publisher
TU Wien, E230-03 Road Engineering
-
tuw.relation.publisherplace
Wien
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Structure-Property Relationsship
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
35
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
35
-
tuw.publication.orgunit
E000 - Technische Universität Wien
-
dc.identifier.libraryid
AC17644065
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0002-5068-3482
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0003-2153-9315
-
tuw.editor.orcid
0000-0002-8329-8687
-
tuw.editor.orcid
0000-0003-4101-1964
-
tuw.event.name
Advances in Materials and Pavement Performance Prediction 2025 (AM3P 2025)
en
tuw.event.startdate
07-05-2025
-
tuw.event.enddate
09-05-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
TU Wien/E230-03
-
tuw.event.presenter
Acharjee, P.K.
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Bauingenieurwesen
-
wb.sciencebranch
Verkehrswesen
-
wb.sciencebranch.oefos
2011
-
wb.sciencebranch.oefos
2013
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
70
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openairetype
conference paper
-
item.openaccessfulltext
Open Access
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
The University of Texas at Tyler, United States of America (the)
-
crisitem.author.dept
The University of Texas at Tyler, United States of America (the)
-
crisitem.author.dept
The University of Texas at Tyler, United States of America (the)
-
crisitem.author.dept
The University of Texas at Tyler, United States of America (the)
-
crisitem.author.dept
The University of Texas at Tyler, United States of America (the)