<div class="csl-bib-body">
<div class="csl-entry">Muturi, T. W., Adu-Gyamfi, Y., Kesse, D., & University of Missouri. (2025). Complex Shadow Removal in Pavement Imagery: Leveraging Diffusion Models for Advanced Solutions. In L. Eberhardsteiner, B. Hofko, & R. Blab (Eds.), <i>Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria</i> (pp. 563–566). TU Wien, E230-03 Road Engineering. https://doi.org/10.34726/10787</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219296
-
dc.identifier.uri
https://doi.org/10.34726/10787
-
dc.description.abstract
Shadows introduce uneven illumination; obscuring crack details and causing shadow boundaries to be misinterpreted as cracks within crack detection algorithms. This study proposes a shadow removal algorithm leveraging conditional diffusion models to eliminate shadows in top-down and oblique-view pavement images. We introduce the Pavement Image Shadow Triplet Dataset (PISTD), based on the ISTD dataset for the task. Hyperparameter tuning and training are explored on 256x256 and 512x512-pixel images to determine the tradeoff between crack detection accuracy and reconstruction precision. Moreover, the two models are compared with state-of-the-art models across PSNR, RMSE, and F1 accuracy metrics. The proposed model achieves a 6% and 38% higher segmentation accuracy on top-down and oblique view images, respectively. Evaluation of the algorithm is performed with real-world shadow images with qualitative results on the images demonstrating the effectiveness of the approach.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Deep Learning
en
dc.subject
Pavement Distress
en
dc.subject
Diffusion Models
en
dc.title
Complex Shadow Removal in Pavement Imagery: Leveraging Diffusion Models for Advanced Solutions
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/10787
-
dc.contributor.affiliation
University of Missouri, United States of America (the)
-
dc.contributor.affiliation
University of Missouri, United States of America (the)
-
dc.contributor.affiliation
University of Missouri, United States of America (the)
-
dc.relation.isbn
978-3-901912-99-3
-
dc.relation.doi
10.34726/9259
-
dc.description.startpage
563
-
dc.description.endpage
566
-
dc.rights.holder
TU Wien, E230-03 Road Engineering
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria
-
tuw.container.volume
IV
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
tuw.relation.publisher
TU Wien, E230-03 Road Engineering
-
tuw.relation.publisherplace
Wien
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Structure-Property Relationsship
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
35
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
35
-
tuw.publication.orgunit
E000 - Technische Universität Wien
-
dc.identifier.libraryid
AC17644073
-
dc.description.numberOfPages
4
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0003-2153-9315
-
tuw.editor.orcid
0000-0002-8329-8687
-
tuw.editor.orcid
0000-0003-4101-1964
-
tuw.event.name
Advances in Materials and Pavement Performance Prediction 2025 (AM3P 2025)
en
tuw.event.startdate
07-05-2025
-
tuw.event.enddate
09-05-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
TU Wien/E230-03
-
tuw.event.presenter
Adu-Gyamfi, Y.
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Bauingenieurwesen
-
wb.sciencebranch
Verkehrswesen
-
wb.sciencebranch.oefos
2011
-
wb.sciencebranch.oefos
2013
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
70
-
dc.contributor.authorgroup
University of Missouri
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openairetype
conference paper
-
item.openaccessfulltext
Open Access
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
University of Missouri, United States of America (the)
-
crisitem.author.dept
University of Missouri, United States of America (the)
-
crisitem.author.dept
University of Missouri, United States of America (the)